2020中考数学考点相关习题解析2
暑假过后,又有一批准初三生开始备考中考了,虽然距离2020年中考考试时间还有不少时间,但是一入初三就开始冲刺了。数学想必是好多同学都特别担心的一门学科,今天坦途网中考频道小编针对重点知识点进行了模拟题的分享,赶紧收藏吧!
直角三角形相关
∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()
A.6 B.7 C.8 D.10
分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD可以求得ED=4.然后由三角形中位线定理可以求得BF=2 ED=8.
解:∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,
∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,
∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.
点评:本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.
翻折变换
Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()
A.B.C.4D.5
考点:翻折变换(折叠问题).
分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△ABC中,根据勾股定理可得关于x的方程,解方程即可求解.
解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,
∵D是BC的中点,
∴BD=3,
在Rt△ABC中,x2+32=(9﹣x)2,
解得x=4.
故线段BN的长为4.
故选:C.
点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.
以上就是今天整理的全部内容,你做的结果怎么样呢?小编认为中考考试的数学科目最重要的就是知识点的熟练,只有能够将考点熟练的掌握,才可以完全灵活把握试题,如果大家在接下来的学习中想了解更多中考知识点,不妨登录坦途网获取相关资讯,加油吧,相信你们可以成功的!
温馨提示:因考试政策、内容不断变化与调整,坦途网提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
- 2020中考数学考点相关习题解析1008-02
- 2020中考数学考点相关习题解析908-02
- 2020中考数学考点相关习题解析808-02
- 2020中考数学考点相关习题解析708-02