雅思考试经典必读阅读练习题及答案2
我们从小参加过这么多的英文考试,阅读似乎成为每一种英语考试的必考部分,阅读不仅仅是要掌握基础知识那么简单,还要求我们有一定的理解能力和逻辑思维能力,小编为大家准备了这篇阅读试题,希望能帮助大家提升阅读水平,在坦途网雅思考试频道还有很多相关的内容和试题,现在一起来看看这篇文章吧!
Rogue theory of smell gets a boost
1. A controversial theory of how we smell, which claims that our fine sense of odour depends on quantum mechanics, has been given the thumbs up by a team of physicists.
2. Calculations by researchers at University College London (UCL) show that the idea that we smell odour molecules by sensing their molecular vibrations makes sense in terms of the physics involved.
3. That's still some way from proving that the theory, proposed in the mid-1990s by biophysicist Luca Turin, is correct. But it should make other scientists take the idea more seriously.
4. "This is a big step forward," says Turin, who has now set up his own perfume company Flexitral in Virginia. He says that since he published his theory, "it has been ignored rather than criticized."
5. Most scientists have assumed that our sense of smell depends on receptors in the nose detecting the shape of incoming molecules, which triggers a signal to the brain. This molecular 'lock and key' process is thought to lie behind a wide range of the body's detection systems: it is how some parts of the immune system recognise invaders, for example, and how the tongue recognizes some tastes.
6. But Turin argued that smell doesn't seem to fit this picture very well. Molecules that look almost identical can smell very different — such as alcohols, which smell like spirits, and thiols, which smell like rotten eggs. And molecules with very different structures can smell similar. Most strikingly, some molecules can smell different — to animals, if not necessarily to humans — simply because they contain different isotopes (atoms that are chemically identical but have a different mass).
7. Turin's explanation for these smelly facts invokes the idea that the smell signal in olfactory receptor proteins is triggered not by an odour molecule's shape, but by its vibrations, which can enourage an electron to jump between two parts of the receptor in a quantum-mechanical process called tunnelling. This electron movement could initiate the smell signal being sent to the brain.
8. This would explain why isotopes can smell different: their vibration frequencies are changed if the atoms are heavier. Turin's mechanism, says Marshall Stoneham of the UCL team, is more like swipe-card identification than a key fitting a lock.
9. Vibration-assisted electron tunnelling can undoubtedly occur — it is used in an experimental technique for measuring molecular vibrations. "The question is whether this is possible in the nose," says Stoneham's colleague, Andrew Horsfield.
10. Stoneham says that when he first heard about Turin's idea, while Turin was himself based at UCL, "I didn't believe it". But, he adds, "because it was an interesting idea, I thought I should prove it couldn't work. I did some simple calculations, and only then began to feel Luca could be right." Now Stoneham and his co-workers have done the job more thoroughly, in a paper soon to be published in Physical Review Letters.
11. The UCL team calculated the rates of electron hopping in a nose receptor that has an odorant molecule bound to it. This rate depends on various properties of the biomolecular system that are not known, but the researchers could estimate these parameters based on typical values for molecules of this sort.
12. The key issue is whether the hopping rate with the odorant in place is significantly greater than that without it. The calculations show that it is — which means that odour identification in this way seems theoretically possible.
13. But Horsfield stresses that that's different from a proof of Turin's idea. "So far things look plausible, but we need proper experimental verification. We're beginning to think about what experiments could be performed."
14. Meanwhile, Turin is pressing ahead with his hypothesis. "At Flexitral we have been designing odorants exclusively on the basis of their computed vibrations," he says. "Our success rate at odorant discovery is two orders of magnitude better than the competition." At the very least, he is putting his money where his nose is.
今天的内容就为大家准备了这么多,在我们复习备考期间,有很多先方法和技巧会为我们节约很多时间,我们要学会把基础知识与学习技巧相结合,这样我们学起来才会事半功倍,小编还会为大家继续更新相关的内容和每月雅思考试时间的变更,希望能够帮助大家顺利通过考试!
温馨提示:因考试政策、内容不断变化与调整,坦途网提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!
- 2019年雅思考试考前必看经典阅读试题508-27
- 2019年雅思考试考前必看经典阅读试题408-27
- 2019年雅思考试考前必看经典阅读试题308-27
- 2019年雅思考试考前必看经典阅读试题208-27