成人高考

成人高考高起点数学辅导文章
北京上海天津重庆更多

2019年成考高起点数学章节难点解析5

2019年06月15日 14:07:49来源:成人高考考试网
导读:成人高考高起点数学考试对于各位考生来说有很大困难,考生需要多多练习才能突破成绩。想要提高成绩就一定要记得多积累些成人高考知识点分享,加油备考吧!

日前,即将进入到2019年成考报名的阶段了,所以同学们一定要及时关注成考报名资讯,不要误了最佳的报名时间。今天先对成考知识点进行积累吧,相信坦途网成人高考频道分享的这篇文章会是你们需要的。 

难点5 求解函数解析式

求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.

●难点磁场

(★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).

●案例探究

[例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式.

(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式.

命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.

知识依托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域.

错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.

技巧与方法:(1)用换元法;(2)用待定系数法.

解:(1)令t=logax(a>1,t>0;0

因此f(t)= (at-a-t)

∴f(x)= (ax-a-x)(a>1,x>0;0

(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c

得 并且f(1)、f(-1)、f(0)不能同时等于1或-1,所以所求函数为:f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1.

[例2]设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.

命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目. 知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.

错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.

技巧与方法:合理进行分类,并运用待定系数法求函数表达式.

解:(1)当x≤-1时,设f(x)=x+b

∵射线过点(-2,0).∴0=-2+b即b=2,∴f(x)=x+2.

(2)当-1

∵抛物线过点(-1,1),∴1=a·(-1)2+2,即a=-1

∴f(x)=-x2+2.

(3)当x≥1时,f(x)=-x+2

综上可知:f(x)= 作图由读者来完成.

●锦囊妙计

本难点所涉及的问题及解决方法主要有:

1.待定系数法,如果已知函数解析式的构造时,用待定系数法;

2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;

3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);

另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.

今天的分享先到这里,多了解些备考技巧和备考知识是很重要的。所以你们想了解更多关于成考招生政策、考前辅导、模拟真题、成人高考成绩查询等有关内容,坦途网小编也将实时为广大学子更新相关资讯,预祝各位考生都能取得理想的成绩,鹏程万里。

温馨提示:因考试政策、内容不断变化与调整,坦途网提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!

成人高考培训课程免费试听

预约免费体验课

教育顾问会第一时间安排您的体验课!

课程预约立即提交
最新文章
电话咨询在线咨询资料领取